

DATASHEET

4/30/2013

Fema Part Number

GM128128E-15-O3CF				
Description	1.5" Passive Matrix Full Color OLED Display			
	128x128 Characters			
	Extended Operating Temperature -40 to 85 °C			
	Wide Viewing Angle			

Fema Electronics Corporation:

17815 Newhope Street, Suite G, Fountain Valley, CA 92708 Tel: 714-825-0140

Please visit our website www.femaelectronics.com or email us at tft@femacorp.com

1. Basic Specifications

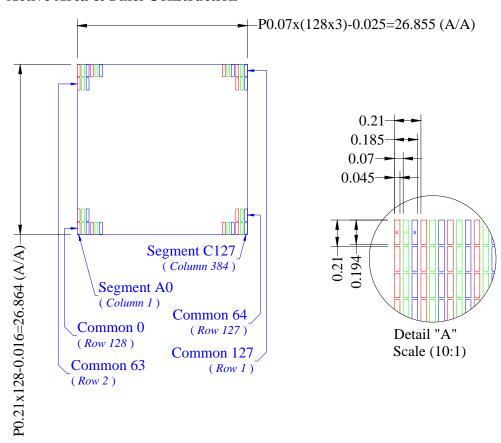
1.1 Display Specifications

1) Display Mode: Passive Matrix

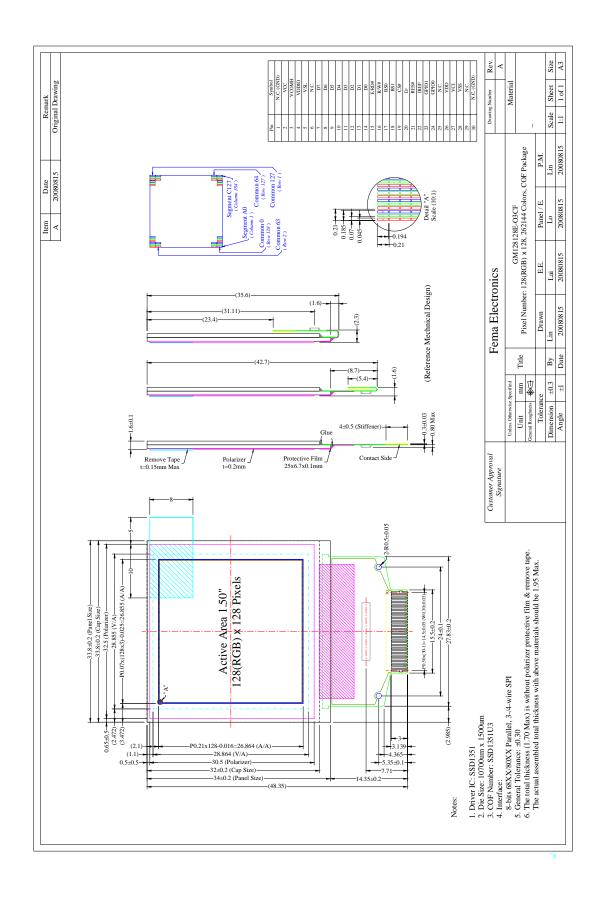
2) Display Color: 262,144 Colors (Maximum)

3) Drive Duty: 1/128 Duty

1.2 Mechanical Specifications


1) Outline Drawing: According to the annexed outline drawing

2) Number of Pixels: $128 (RGB) \times 128$


3) Panel Size: 33.80 × 34.00 × 1.60 (mm)
 4) Active Area: 26.855 × 26.864 (mm)
 5) Pixel Pitch: 0.07 × 0.21 (mm)
 6) Pixel Size: 0.045 × 0.194 (mm)

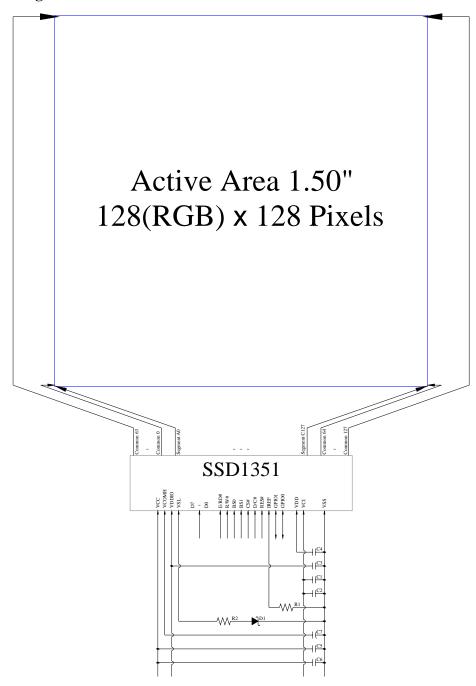
7) Weight: 3.75 (g)

1.3 Active Area & Pixel Construction

1.4 Mechanical Drawing

1.5 Pin Definition

Pin Number	Symbol	Type	Function
Power Supply	y		
27	VCI	P	Power Supply for Operation This is a voltage supply pin. It must be connected to external source & always be equal to or higher than VDD & VDDIO.
26	VDD	P	Power Supply for Core Logic Circuit This is a voltage supply pin which is regulated internally from VCI. A capacitor should be connected between this pin & VSS under all circumstances.
4	VDDIO	P	Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to VCI or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS0~BS1, D0~D7, control signals) pull high, they should be connected to VDDIO.
28	VSS	P	Ground of OEL System This is a ground pin. It also acts as a reference for the logic pins, the OEL driving voltages, and the analog circuits. It must be connected to external ground.
2	VCC	P	Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. It must be connected to external source.
Driver			
22	IREF	I	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 12.5uA.
3	VCOMH	Р	Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS.
5	VSL	P	Voltage Output Low Level for SEG Signal This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, this pin should connect with resistor and diode to ground.
External IC	Control		
24 23	GPIO0 GPIO1	I/O	General Purpose Input/Output These pins could be left open individually or have signal inputted/outputted. They are able to use as the external DC/DC converter circuit enabled/disabled control or other applications.


1.5 Pin Definition (Continued)

Pin Number	Symbol	I/O	Function		
Interface					
17 18	BS0 BS1	I	Communicating Protocol Select These pins are MCU interface select following table: 3-wire SPI 4-wire SPI 68XX-parallel (8-bit) 80XX-parallel (8-bit)		BS1 0 0 1 1 1
21	RES#	I	Power Reset for Controller and This pin is reset signal input. W initialization of the chip is executed.	hen the p	oin is low,
19	CS#	I	Chip Select This pin is the chip select input. The MCU communication only when CS		
20	D/C#	I	Data/Command Control This pin is Data/Command control pulled high, the input at D7~D0 is tr When the pin is pulled low, the input transferred to the command regrelationship to MCU interface signal Timing Characteristics Diagrams. When 3-wire serial mode is select connected to VSS.	reated as di out at D7~ gister.	splay data. D0 will be For detail refer to the
15	E/RD#	I	Read/Write Enable or Read This pin is MCU interface input. V 68XX-series microprocessor, this pi Enable (E) signal. Read/write opera this pin is pulled high and the CS# is When connecting to an 80XX-mic receives the Read (RD#) signal. D initiated when this pin is pulled lowlow. When serial mode is selected, this p to VSS.	n will be ution is inition is inition is inition is inition pulled loweroprocessor at a read ow and CS	used as the iated when w. or, this pin peration is # is pulled
16	R/W#	I	Read/Write Select or Write	pin will be to "Low" cted, this properation CS# is pulled.	his pin to 'for write pin will be is initiated ed low.
7~14	D7~D0	I/O	Host Data Input/Output Bus These pins are 8-bit bi-direction connected to the microprocessor's da mode is selected, D1 will be the se and D0 will be the serial clock input Unused pins must be connected to V	ata bus. V erial data in SCLK.	Vhen serial nput SDIN

1.5 Pin Definition (Continued)

Pin Number	Symbol	I/O	Function
Reserve			
6, 25, 29	N.C.	-	Reserved Pin The N.C. pins between function pins are reserved for compatible and flexible design.
1, 30	N.C. (GND)	-	Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground.

1.6 Block Diagram

MCU Interface Selection: BS0 and BS1

Pins connected to MCU interface: D7~D0, E/RD#, R/W#, CS#, D/C#, and RES#

C1, C5: 0.1μF C2: 4.7μF C6: 10μF C3, C4: 1μF

C7: 4.7uF / 25V Tantalum Capacitor

R1: $560k\Omega$, R1 = (Voltage at IREF – VSS) / IREF

R2: 50Ω, 1/4W D1: ≤1.4V, 0.5W

2. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Operation	V_{CI}	-0.3	4	V	1, 2
Supply Voltage for Logic	$V_{ m DD}$	-0.5	2.75	V	1, 2
Supply Voltage for I/O Pins	V_{DDIO}	-0.5	V_{CI}	V	1, 2
Supply Voltage for Display	V_{CC}	-0.5	16	V	1, 2
Operating Temperature	T_{OP}	-30	70	°C	_
Storage Temperature	T_{STG}	-40	80	°C	_

Note 1: All the above voltages are on the basis of "VSS = 0V".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

3. Optics & Electrical Characteristics

3.1 Optics Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Brightness (White)	L_{br}	With Polarizer (Note 3)	70	90	-	cd/m ²
CIE (White)	(x)	With Polarizer	0.26	0.30	0.34	
C.I.E. (White)	(y)	with Polarizer	0.29	0.33	0.37	
C.I.E. (Red)	(x)	With Polarizer	0.60	0.64	0.68	
C.I.E. (Keu)	(y)	Willi Folalizei	0.30	0.34	0.38	
C.I.E. (Green)	(x)	With Polarizer	0.27	0.31	0.35	
C.I.E. (Gleen)	(y)	Willi Folalizei	0.58	0.62	0.66	
C.I.E. (Blue)	(x)	With Polarizer	0.10	0.14	0.18	
C.I.E. (Diue)	(y)	With Folanzei	0.12	0.16	0.20	
Dark Room Contrast	CR		-	>2000:1	_	
View Angle			>160	_	_	degree

^{*} Optical measurement taken at $V_{CI} = 2.8V$, $V_{CC} = 13V$. Software configuration follows Section 4.4 Initialization.

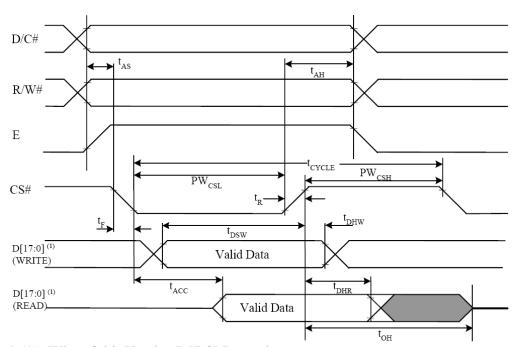
3.2 DC Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage for Operation	V_{CI}		2.4	2.8	3.5	V
Supply Voltage for Logic	V_{DD}		2.4	2.5	2.6	V
Supply Voltage for I/O Pins	V_{DDIO}		1.65	1.8	V_{CI}	V
Supply Voltage for Display	V_{CC}	Note 3	12.5	13	13.5	V
High Level Input	V_{IH}		$0.8 \times V_{DDIO}$	-	V_{DDIO}	V
Low Level Input	V_{IL}		0	-	$0.2 \times V_{DDIO}$	V
High Level Output	V_{OH}	$I_{out} = 100 \mu A, 3.3 MHz$	$0.9 \times V_{DDIO}$	-	V_{DDIO}	V
Low Level Output	V_{OL}	$I_{out} = 100 \mu A, 3.3 MHz$	0	-	$0.1 \times V_{DDIO}$	V
Operating Current for V _{CI}	I_{CI}		-	240	300	μΑ
Operating Comment for V	т	Note 4	_	23.2	29.0	mA
Operating Current for V _{CC}	I_{CC}	Note 5	_	33.4	41.8	mA
Sleep Mode Current for V _{CI}	I _{CI, SLEEP}		_	1	5	μΑ
Sleep Mode Current for V _{CC}	I _{CC, SLEEP}		_	1	5	μΑ

Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request.

Note 4: $V_{CI} = 2.8V$, $V_{CC} = 13V$, 50% Display Area Turn on.

Note 5: $V_{CI} = 2.8V$, $V_{CC} = 13V$, 100% Display Area Turn on.

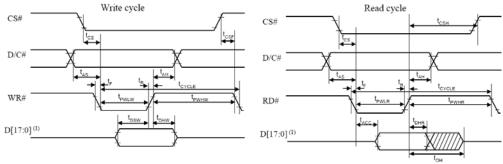

^{*} Software configuration follows Section 4.4 Initialization.

3.3 AC Characteristics

3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t_{AS}	Address Setup Time	10	-	ns
$t_{ m AH}$	Address Hold Time	0	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	ns
t_{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	_	70	ns
t_{ACC}	Access Time	_	140	ns
DW	Chip Select Low Pulse Width (Read)	120		
PW_{CSL}	Chip Select Low Pulse Width (Write)	60	_	ns
DW	Chip Select High Pulse Width (Read)	60		
PW_{CSH}	Chip Select High Pulse Width (Write)	60	_	ns
t_R	Rise Time	_	15	ns
t_{F}	Fall Time	_	15	ns

^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$

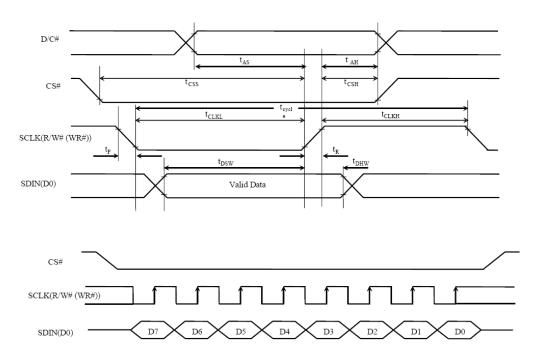


* (1) When 8-bit Used: D[7:0] Instead

3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	_	ns
t_{AS}	Address Setup Time	10	-	ns
t_{AH}	Address Hold Time	0	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	ns
t_{DHW}	Write Data Hold Time	7	-	ns
t_{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	_	70	ns
t_{ACC}	Access Time	_	140	ns
t_{PWLR}	Read Low Time	150	-	ns
t _{PWLW}	Write Low Time	60	-	ns
t _{PWHR}	Read High Time	60	-	ns
t_{PWHW}	Write High Time	60	-	ns
t_{CS}	Chip Select Setup Time	0	-	ns
t_{CSH}	Chip Select Hold Time to Read Signal	0	-	ns
t _{CSF}	Chip Select Hold Time	20	-	ns
t_R	Rise Time	_	15	ns
t_{F}	Fall Time	_	15	ns

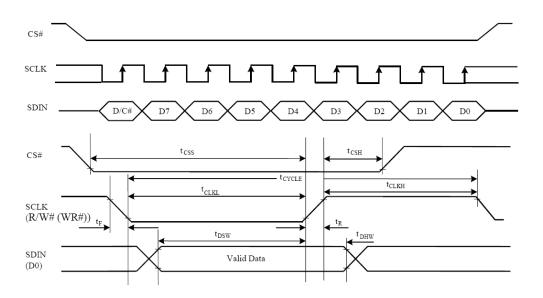
* $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$



* (1) When 8-bit Used: D[7:0] Instead

3.3.3 Serial Interface Timing Characteristics: (4-wire SPI)

Symbol	Description	Min	Max	Unit
$t_{ m cycle}$	Clock Cycle Time	50	-	ns
t_{AS}	Address Setup Time	15	_	ns
t _{AH}	Address Hold Time	15	_	ns
t _{CSS}	Chip Select Setup Time	20	_	ns
t_{CSH}	Chip Select Hold Time	10	_	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	ns
t_{CLKL}	Clock Low Time	20	_	ns
t_{CLKH}	Clock High Time	20	_	ns
t_R	Rise Time	_	15	ns
t_{F}	Fall Time	_	15	ns


^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$

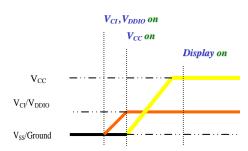
3.3.4 Serial Interface Timing Characteristics: (3-wire SPI)

Symbol	Description	Min	Max	Unit
$t_{ m cycle}$	Clock Cycle Time	50	_	ns
t_{CSS}	Chip Select Setup Time	20	-	ns
t_{CSH}	Chip Select Hold Time	10	_	ns
$t_{ m DSW}$	Write Data Setup Time	15	_	ns
$t_{ m DHW}$	Write Data Hold Time	15	_	ns
t_{CLKL}	Clock Low Time	20	-	ns
t_{CLKH}	Clock High Time	20	-	ns
t_R	Rise Time	_	15	ns
t_{F}	Fall Time	_	15	ns

^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$

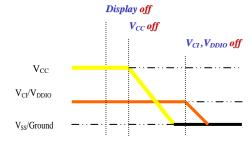
4. Functional Specification

4.1. Commands


Refer to the Technical Manual for the SSD1351

4.2 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

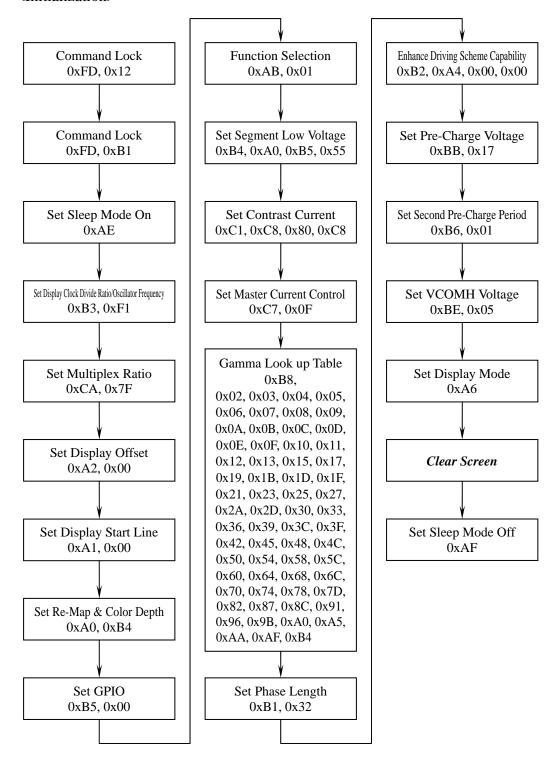

4.2.1 Power up Sequence:

- 1. Power up $V_{CI} \& V_{DDIO}$
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}
- 6. Delay 100ms (when V_{CC} is stable)
- 7. Send Display on command

4.2.2 Power down Sequence:

- 1. Send Display off command
- 2. Power down V_{CC}
- 3. Delay 100 ms (when V_{CC} is reach 0 and panel is completely discharges)
- 4. Power down V_{CI} & V_{DDIO}

4.3 Reset Circuit


When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128(RGB)×128 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Command A2h, B1h, B3h, BBh, BEh are locked by command FDh

4.4 Actual Application Example

Command usage and explanation of an actual example

<Initialization>

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

5. Reliability

5.1 Contents of Reliability Tests

Item	Conditions	Criteria
High Temperature Operation	70°C, 240 hrs	
Low Temperature Operation	-30°C, 240 hrs	
High Temperature Storage	80°C, 240 hrs	The operational
Low Temperature Storage	-40°C, 240 hrs	functions work.
High Temperature/Humidity Operation	60°C, 90% RH, 120 hrs	
Thermal Shock	-40°C ⇔ 85°C, 24 cycles 60 mins dwell	

^{*} The samples used for the above tests do not include polarizer.

5.2 Lifetime

End of lifetime is specified as 50% of initial brightness.

Parameter	Min	Max	Unit	Condition	Notes
Operating Life Time	10,000	-	hr	90 cd/m ² , 50% Checkerboard	6
Storage Life Time	20,000	_	hr	$T_a = 25$ °C, 50% RH	_

Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

5.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH.

^{*} No moisture condensation is observed during tests.